
Puzzle Heuristics: Efficient Lifelong Multi-Agent Pathfinding Algorithm for
Large-scale Challenging Environments

Wonjong Lee1*, Joonyeol Sim2*, Changjoo Nam2

1Department of Artificial Intelligence, Sogang University, Seoul, Korea
2Department of Electronic Engineering, Sogang University, Seoul, Korea

Abstract

This paper describes the solution method of Team AIRLAB
used to participate in the League of Robot Runners Com-
petition which tackles the problem of Lifelong Multi-agent
Pathfinding (MAPF). In lifelong MAPF, multiple agents are
tasked to navigate to their respective goal locations where
new goals are consecutively revealed once they reach ini-
tial goals. Our method consists of (i) Puzzle Heuristics, (ii)
MAPF-LNS2, and (iii) RHCR. The Puzzle Heuristics is our
own algorithm that generates a compact heuristic table con-
tributing to reduce memory consumption and computation
time. MAPF-LNS2 and RHCR are state-of-the-art algorithms
for MAPF. By combining these three algorithms, our method
can improve the efficiency of paths for all agents significantly.

Introduction
Multi-agent Pathfinding (MAPF) is the problem that finds
collision-free paths for multiple agents from their start lo-
cations to their goal locations while optimizing the sum of
total path lengths or the time taken for all tasks to complete
(Stern et al. 2019). It has numerous applications in various
domains, such as logistics, aircraft, and urban traffic sys-
tems. In many such applications, the agents are tasked to
visit multiple destinations consecutively.

Lifelong MAPF (Ma et al. 2017) is an extended version
of the MAPF problem. In contrast to the canonical form of
MAPF, where each agent has only one task and remains at
its goal location, lifelong MAPF requires agents to generate
paths to their respective new goal locations after reaching
their current goals. The challenges lie in the fact that the
next goals are not known to the agents beforehand and the
time that the agents finish their current tasks are not syn-
chronized. Thus, it is paramount to have an efficient method
that can find collision-free paths promptly for a dynamically
varying task set given a limited time budget.

The League Of Robot Runners (Harabor 2023) is a com-
petition to tackle the lifelong MAPF in challenging environ-
ments in terms of the complexity of the environments as well
as the scale of the agent team. Our team AIRLAB (ranked
8th) developed a method employing one of the state-of-the-
art algorithms MAPF-LNS2 (Li et al. 2022) and Rolling-

*These authors contributed equally.
Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Horizon Collision Resolution (RHCR) framework (Li et al.
2021) as the MAPF solver. Our key contribution is to de-
velop our own approach, Puzzle Heuristics, which generates
a compact heuristic tables to reduce memory consumption
and computation.

Problem Definition
Our goal is to solve the lifelong MAPF instances presented
in the League of Robot Runners competition. Therefore, the
problem definition is dictated by the goal and rules of the
competition.

A team of k agents A = {a1, a2, ..., ak} perform errands
(i.e., tasks) that appear in an online manner in a determin-
istic and a fully observable environment. The environment
is represented by a grid map G = (V, E) where V is the
set of vertices (representing grid cells) and E is the set of
edges representing the adjacency of the cells (i.e., G is a 4-
connected graph). The agents operate on discrete time steps,
denoted as t = 0, 1, 2, ..., τ where a constant τ is the final
time step of an instance. At each time step, each agent can
perform one of the four actions: move forward, rotate left or
right 90 degrees, or wait.

The position vti ∈ V is the position of agent ai on the
grid map at time step t. Let Pt

i = {vti , v
t+1
i , ..., vt+T

i } be
a path of agent ai from t to t + T that the agent plans to
move. Along the path, an agent must avoid conflicts with
other agents. Two types of conflicts are defined: (i) the ver-
tex conflict where more than one agents move to the same
position and (ii) the edge conflict where two agents swap
their positions simultaneously. Specifically, a vertex conflict
occurs at t if ∃i, j such that i ̸= j and vti = vtj . An edge
conflict occurs at t if ∃i, j such that i ̸= j, vti = vt−1

j and
vtj = vt−1

i . An errand is located on a position in the map.
It can be completed only if the agent assigned to it arrives
at the position of the errand. An agent becomes to know the
next errand only after it finishes the current one.

Given the assumptions and definitions, the objective of the
lifelong MAPF is to maximize the number of errands to be
completed by A within t = 0, · · · τ .

Methods
By integrating the Puzzle Heuristics with MAPF-LNS2 and
RHCR, and Puzzle Heuristics, our method can handle large-



Figure 1: An example result is the Puzzle Heuristics method for generating a compact heuristic table. The same-colored neigh-
boring cells belong to the same area. Each area is formed around a pivot point such that the belonging cells are within the depth
limit d = 3 using BFS, the root of which is the pivot point. The cells within the same area are assigned the same puzzle index.
The heuristic table stores only the distances between the areas (i.e., pivot points).

scale lifelong MAPF instances in challenging environments.
We provide a detailed description of each component and
how they contribute to the overall effectiveness and effi-
ciency of our solution method.

Puzzle Heuristics
The shortest distance between a pair of cells is frequently
queried in an MAPF instance. In a fast-paced situation
where the quick online computation of paths is necessary,
it is a common approach to precalculate the distances of all
pairs. However, as the size of the map grows, the memory
required to store the (Manhattan) distances increases signif-
icantly. A naı̈ve method has the space complexity O(N2)
for a grid map with N cells. This is particularly problem-
atic in the competition since the memory size allocated to
our method is limited. If we reduce the memory usage by
storing only part of the distances, some of the computation
time to resolve inter-agent conflicts at runtime needs to be
allocated to calculate the distances. Therefore, the solution
quality should be compromised to balance the trade-off be-
tween storage space and computational overhead.

The core idea of Puzzle Heuristics is to divide the grid
map into areas such that each area contains contiguous cells
within a depth d in a tree search from its central cell called
pivot point. The algorithm begins by selecting the lowest in-
dexed cell (the index increments from top to bottom and left
to right like the pixel coordinates) in the grid map as the first
pivot point. Using Breadth-First Search (BFS), the area ex-
pands over non-obstacle cells from the pivot point, ensuring
that the frontier of the BFS does not exceed a depth of d.
Cells within the area are labeled with the same unique puz-

zle index. The process selects the next unlabeled cell with
the lowest index as the new pivot point to repeat the area
expansion. This procedure iterates until all cells in the grid
map are labeled. The same-colored neighboring cells shown
in the map of Figure 1 belong to the same area.

Once all cells are formed into areas, the shortest distances
between all pairs of areas (i.e., pivot points) are calculated
and stored in the heuristic table. By storing only the dis-
tances between pivot points instead of all cells, we could be
able to meet the memory constraint. When the distance be-
tween two cells is queried, the heuristic value in the table
effectively approximates the actual distance.

The number of cells in an area can reach up to 2d2+2d+
1 so at most 2d2 + 2d + 1 cells can be represented by a
single value. As a result, the size of the heuristic table using
Puzzle Heuristics could be reduced to (N/(2d2+2d+1))2,
leading to significant memory savings compared to the naı̈ve
approach.

MAPF-LNS2
MAPF-LNS2 is one of the state-of-the-art algorithms for
solving large MAPF instances by leveraging the powerful
meta-heuristic technique Large Neighborhood Search (Shaw
1998). A key advantage of MAPF-LNS2 is its ability to start
from any of feasible or infeasible initial solutions. The al-
gorithm iteratively selects a subset of agents using a neigh-
borhood selection method. The method destroys the current
paths of agents and repairs them using an efficient single-
agent path planner that minimizes the number of collisions.
If the repaired solution reduces the number of collisions, the
new paths replace the old ones. This destroy-and-repair pro-



Figure 2: An illustration of deadlock situations where ai and
aj face each other and attempt to move forward as shown in
the grid map in the left. Blue (ai) has a higher priority so
plans P t

i which passes through the current position of aj at
t + 1. If aj moves forward, an edge conflict occurs. If aj
chooses to rotate or wait, a vertex conflict occurs.

cedure continues until a stopping criterion is satisfied.
To achieve high efficiency, MAPF-LNS2 employs Safe

Interval Path Planning with Soft Constraints (SIPPS), a vari-
ant of the Safe Interval Path Planning algorithm (Phillips and
Likhachev 2011) that can handle hard and soft constraints.
Integrating SIPPS has shown significant improvements of
MAPF-LNS2. While MAPF-LNS2 can be used with many
existing MAPF algorithms, we choose to use Prioritized
Planning (PP) (Silver 2005) which is simple to implement
and fast.

RHCR
RHCR is a framework for solving the lifelong MAPF by de-
composing an instance into a sequence of Windowed MAPF
instances. RHCR utilizes two user-specified parameters: the
time horizon w and the replanning period h. The time hori-
zon w specifies the time window such that the MAPF solver
must resolve conflicts within the next w steps (i.e., win-
dowed MAPF solver). The replanning period h determines
the frequency of the solver to replan paths. To avoid colli-
sions, w should be larger than or equal to h. The values of
these parameters are critical for the performance of RHCR.
Too small values of w would lead to deadlocks whereas
too large values could result in inefficient solutions and in-
creased computation time.

Greedy Randomized Search
Although MAPF-LNS2 and RHCR can solve large instances
quickly, they would lead to deadlocks (i.e., no solution
found) as PP is not proven to be complete.

Consider a scenario where ai and aj face each other at t
and attempt to move forward. Here ai has a higher priority.
During the planning phase, ai plans its path P t

i while ignor-
ing the presence of aj as aj has a lower priority. As a result,
the planned path of ai goes through the current location of
aj at t+1 (i.e., vt+1

i = vtj). Given this path P t
i , aj begins to

plan P t
j .

In this situation, all possible actions for aj at t + 1 re-
sult in conflicts because P t

i passes through vt+1
j in any

Figure 3: Test environments. From the top and left, (1) Ran-
dom, (2) City, and (3) Game, (4) Warehouse, and (5) Sorta-
tion maps.

case. Specifically, if aj chooses to move forward, then an
edge conflict occurs (i.e., vtj = vt+1

i and vt+1
j = vti ). If

aj chooses to wait or rotate, a vertex conflict occurs (i.e.,
vt+1
i = vtj = vt+1

j or vt+1
j = vtj = vt+1

i ), respectively).
Thus, aj cannot find a conflict-free action at t+ 1. Figure 2
illustrates the three conflict situations incurring deadlocks.

We develop a greedy randomized search that combines
greediness and randomness to deal with deadlocks . We
probabilistically multiply the number of edge collisions and
vertex collisions by a factor of two. By doing so, our method
could have an opportunity to explore alternative paths rather
than relying on routes determined by the heuristic values.
This simple yet effective approach enables the algorithm
to explore a broader range of possibilities and escape from
deadlocks.

Experiments
We evaluate our method in five environments provided by
the competition: Sortation, Warehouse, Game, City, and
Random map as shown in Figure 3. Each instance has pre-
determined agent-task pairs. We vary the number of agents
from 50 to 3000 agents. The evaluation metric is the to-
tal number of errands completed in 5,000 seconds. The test
system is with AMD Ryzen 5800X 3.8GHz CPU and 32G
RAM. The source code is written in C++17.

As shown in Figure 4, our method effectively solves in-
stances in the random map environment up to 200 agents.
In other environments, the solution quality remains reason-
able for instances with up to 1,200 agents but declines as the
number of agents increases.

The ability of MAPF-LNS2 and RHCR to solve large
instances allows our algorithm to handle scenarios with a
significantly large number of agents. The Puzzle Heuristics



0 500 1000 1500 2000 2500 3000
#Agent

0

5000

10000

15000

20000

25000
#E

rra
nd

 (l
og

)
Sortation
Warehouse
Game
City
Random

Figure 4: The number of completed errands by the proposed
method in five challenging environments: Sortation, Ware-
house, Game, City, and Random, with the number of agents
ranging from 50 to 3000.

plays a crucial role in reducing the memory consumption
and computation time for large-sized maps like Sortation,
Warehouse, and Game. The greedy randomized search al-
lows us to escape deadlocks effectively even in dense envi-
ronments like Sortation, Warehouse, and Random.

The algorithm struggles to find individual paths of all
agents within the time budget, particularly with a large num-
ber of agents owing to the characteristics of PP, which plans
paths sequentially. Since higher-rank agents are considered
fixed obstacles to lower-rank agents, the feasible positions
becomes scarce.

We observe a trade-off in choosing the value of w, which
is the planning horizon w in RHCR. A low value of w
leads to efficient planning but could cause deadlocks be-
cause agents may not be able to plan far enough ahead to
avoid conflicts. If we choose a high value, the ability to avoid
deadlocks is improved. Balancing between these two cases
is critical for the performance of algorithm.

Conclusion
In this paper, we presented a novel approach for solving the
challenging lifelong MAPF problem in the context of the
League of Robot Runners competition. Our method com-
bines three key techniques: Puzzle Heuristics, MAPF-LNS2,
and RHCR. Additionally, we introduced a greedy random-
ized search to escape from deadlock. Experimental results
demonstrated the effectiveness of our approach in various
environments, particularly in random maps with a moder-
ate number of agents. Through participation in the competi-
tion, we found our future directions that include improving
the scalability of the method and implementing methods to
avoid deadlock situations.

References
Harabor, D. 2023. League Of Robot Runner.
https://www.leagueofrobotrunners.org. [Online].
Li, J.; Chen, Z.; Harabor, D.; Stuckey, P. J.; and Koenig,
S. 2022. MAPF-LNS2: Fast repairing for multi-agent path

finding via large neighborhood search. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 36,
10256–10265.
Li, J.; Tinka, A.; Kiesel, S.; Durham, J. W.; Kumar, T. S.; and
Koenig, S. 2021. Lifelong multi-agent path finding in large-
scale warehouses. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 35, 11272–11281.
Ma, H.; Li, J.; Kumar, T.; and Koenig, S. 2017. Life-
long multi-agent path finding for online pickup and delivery
tasks.
Phillips, M.; and Likhachev, M. 2011. Sipp: Safe interval
path planning for dynamic environments. In 2011 IEEE in-
ternational conference on robotics and automation, 5628–
5635. IEEE.
Shaw, P. 1998. Using constraint programming and local
search methods to solve vehicle routing problems. In Inter-
national conference on principles and practice of constraint
programming, 417–431. Springer.
Silver, D. 2005. Cooperative pathfinding. In Proceedings of
the aaai conference on artificial intelligence and interactive
digital entertainment, volume 1, 117–122.
Stern, R.; Sturtevant, N.; Felner, A.; Koenig, S.; Ma, H.;
Walker, T.; Li, J.; Atzmon, D.; Cohen, L.; Kumar, T.; et al.
2019. Multi-agent pathfinding: Definitions, variants, and
benchmarks. In Proceedings of the International Symposium
on Combinatorial Search, volume 10, 151–158.


