
Description of Ideas Used in League of Robot Runners 2023

Márton Ambrus-Dobai
Faculty of Informatics, ELTE Eötvös Loránd University

Pázmány Péter sétány 1/C, Budapest 1117, Hungary
n4yhn4@inf.elte.hu

Abstract

This article describes the ideas we used to create our so-
lution for the 2023 League of Robot Runners competition.
We aimed to create a simple, easy-to-understand, and imple-
mentable solution. We incorporated techniques inspired by
real-world traffic and commonly used optimization. We be-
gin with a baseline approach using Prioritized Planning and
a reservation table. Acknowledging its limitations, we imple-
mented a simpler algorithm and progressive improvements,
including multi-threading, path reuse, a mechanism to move
waiting agents, and special handling of maps. Our evalu-
ation demonstrates significant performance gains regarding
tasks completed and processing time with each improvement.
Nearly two magnitudes better results in the final version com-
pared to the first. Finally, we discuss potential areas for future
research, including comparisons with established algorithms
and exploration of alternative techniques.

Introduction
Multi-agent pathfinding (MAPF) is a category of problems
in which we have agents in a shared environment, and we
have to find paths to their goals so they do not collide with
each other. MAPF is an increasingly important problem in
various fields, including robotics, logistics, smart cities, and
entertainment. In 2023, the first League of Robot Runners
competition was held to boost the research of MAPF solvers.
The competition was about a special version of the MAPF
problem, where the robots have to complete tasks on a 2D
grid map with a combination of forward-moving or turning
actions. The addition of turning actions makes this prob-
lem more interesting compared to the regular MAPF prob-
lems (Stern et al. 2019). Also, the competition was about
lifelong solving instead of a single shot with strict time con-
straints on the solver algorithms.

Some of the known MAPF solvers include Increasing
Cost Tree Search (ICTS) (Sharon et al. 2013), Conflict-
Based Search (CBS) (Sharon et al. 2015), Priority-Based
Search (PBS) (Ma et al. 2019). These solvers work with
two levels of search algorithms—the higher lever searches
for the best configuration for the lover level. The lover level
tries to find a solution for a given configuration if it exists.
In ICTS, the high-level searches for the shortest path length

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

for the agents that have a solution. The low-level algorithm
searches on a subset of the k-agent search space, whereas the
high-level search defines the agent’s path length. In CBS and
PBS, the low-level solver works with single-agent paths. In
CBS, the high-level search defines a set of constraints, and
the low-level tries to find paths with the added constraints.
In PBS, the high-level search defines a partial ordering of
the agents, and the low-level uses the given ordering to find
paths with Prioritized Planning (PP) (Erdmann and Lozano-
Perez 1987).

While these algorithms have proven to be effective, and
some of them can find optimal solutions, they are complex,
and their response time needs to be faster. So, we created a
solver that is more straightforward and faster. First, we ex-
perimented with a PP-based solver. Then, we created a min-
imal solver, which we used for experiments like using map
limitations, multi-threading, path caching, and tie-breaking
rules.

Our results show that the tested techniques can improve a
solver algorithm’s speed, efficiency, and scalability.

Metodology
Prioritized Planning
Our goal for the 2023 League of Robot Runners competition
was to experiment with how well a simple solution could
perform. As the competition is about solving MAPF prob-
lems, we first experimented with one of the most evident al-
gorithms, Prioritized Planning (PP) (Erdmann and Lozano-
Perez 1987), with A* (Hart, Nilsson, and Raphael 1968) and
a reservation table (Silver 2005).

This approach solves multiple single-agent pathfinding
problems instead of the original, more complex problem. We
plan paths for the agents one after another. As an agent finds
a path, it reserves the locations at the timesteps in the reser-
vation table. Then, the following agents will consider those
reservations as dynamic obstacles on the map and have to
plan around that.

As the organizers made the competition to challenge the
solvers with many agents, our algorithm was slow, and most
of the time, it could not find solutions. As the number of
agents with plans grows, there are fewer and fewer open lo-
cations on the map, so the search becomes longer or runs out
of options and leaves without a solution. A lack of solution



can happen as others have proven that we can only solve a
subset of MAPF instances with PP (Ma et al. 2019).

Minimal Solver
We thought about how to make a solver that can respond
quickly. The simplest, practical solution is to find the single-
agent paths without considering the other agents. From that,
we can calculate the first action required to reach the next
step on the path and return that to the agents. This results
in many conflicts, which we handled by creating a conflict
resolution algorithm that checks for all agents to see if the
action assigned to the agent would cause a collision with an-
other agent. In that case, this agent waits in this timestep,
and the other agent can complete their action. With this so-
lution, every agent travels the shortest path to their target but
sometimes should wait to avoid collisions.

Inspired by real-life traffic control, where we regularly
use one-way roads to reduce accidents and improve traffic
flow, we tried to put this technique into our solution. If we
represent the 2D map with a graph, we turn the map grid
cells into vertices and connect them with their neighbors
with bidirectional edges. Sometimes, solvers use weighted
edges to guide the pathfinding algorithm to prefer one path
over another, but we experimented with removing edges. In
theory, fewer edges should result in shorter planning time
as there are fewer options to check, and some conflicts, like
edge conflicts, can be eliminated.

To evaluate this, we used a simple algorithm to limit the
possible directions as we wanted it to work on every map.
To create a general algorithm, we do not base it on assump-
tions; we base it on the fact that the map is a 2D grid. The
algorithm follows a few rules. Every even row is allowed to
go east, every odd row is allowed to go west, every even col-
umn is allowed to go north, and every odd column is allowed
to go south. This method is suitable because it is general,
can be calculated only by a vertex’s location, avoids edge
conflicts, and supports fast movement of the agents as it re-
moves options for turning but leaves all the options to move
forward if the previous action was also a move forward.

Sadly, this approach created disjointed parts from the
maps. To address this issue, we implemented Tarjan’s algo-
rithm (Tarjan 1972) to create a Strongly Connected Compo-
nents (SCC) analysis on the limited graph. We wrote another
algorithm that goes through the possible edges in a cycle,
and if it encounters an edge that is not allowed but would
connect to a separate component, it allows it. Then, the al-
gorithm does the SCC analysis again. This cycle goes on
until there is only one strongly connected component.

Improvements
While working on implementing the above algorithms, we
got ideas to improve them, and in the rest of the competition,
we experimented with some of the improvements.

Multi-threading One idea often used to speed up lengthy
work is distributing the tasks into smaller ones and doing
them simultaneously. The machine used in the competi-
tion to evaluate submissions has many cores, and this idea
can significantly reduce processing time. As we calculate

agents’ paths independently of each other, we can execute
these pathfinding tasks at the same time. They all use the
same environment to get the map, the agent’s location, and
the task’s location, but none modify this shared environ-
ment, so there will be no data race. They do not depend on
each other, so there is no need for communication and syn-
chronization between them. We used the thread pool imple-
mentation supplied by the Boost library, which the project
already requires. A thread pool is an excellent abstraction
for these kinds of tasks. It manages the optimal number of
threads, usually equal to the number of cores. The user code
gives them the tasks and waits for them to finish. It does
not have to manage threads manually regarding lifetimes and
task execution. With the thread pool, the planner code goes
through the agents, creates a pathfinding task for each, and
puts it in the pool. After that, it waits until the pool finishes
all the tasks, and then the planning can continue with the
conflict resolution.

Reuse paths Another idea was to store the calculated
paths for the agents. Previously, the planner only used the
first step of the path, and the paths were re-calculated in
every timestep. As the shortest path is not changing, we
can calculate, store, and reuse it. With this improvement,
we only need to find new paths for agents who completed
their tasks in the previous timestep. Others use the step in
their saved path, which can result a significant time saving.
In this situation, we sacrifice memory to speed up compu-
tation. We often use this technique if the environment has
spare memory for the algorithm, and speed is more impor-
tant than memory consumption.

Move waiting robots While analyzing some simulation
data, we saw traffic jams at the crossroads where agents
were waiting in long lines. We must introduce a tie-breaking
mechanism for these situations, as the conflict resolver algo-
rithm is not sophisticated enough. Some complex solutions
include checking future conflicts or distances from the tar-
gets and acting based on that information. However, we ex-
perimented with another idea. An idea we got from the real
world. In real life, people in traffic get angry and try to find
another way if possible. To incorporate this idea, the agents
measure how long they are waiting. If this waiting time ex-
ceeds a specific limit, the agents will move to any direction
with free space and delete their previous plans. In the next
step, they will plan a new path that may be more open than
the last.

Special handling of maps In a last attempt to improve
our scores, we tried to craft better limitations for the maps
manually. On the warehouse maps, the agents have to travel
around the grid part because the rule-based limitation re-
sulted in one direction being allowed inside the grid. We
ensured that the rows and columns have alternating direc-
tions in the grid parts of these maps. For the random map,
we created limitations where there are no narrow sections
with both directions allowed, and we tried to minimize the
number of edges while keeping the straights as long as pos-
sible. This attempt resulted in long, rectangular loops.



Results
When the organizers published the problem instances of the
competition, we ran the simulations on our machine to recre-
ate the results. The results are not deterministic for a given
instance because the conflict resolution algorithm uses ran-
dom generation to decide which agent can move in an equal
situation. So, with these results, we cannot compare config-
urations with little difference. However, it is good to spot
more significant improvements. We included the average re-
sults in Table 1. The computer for these simulations has a
4-core 10th-generation Intel CPU with 16 GB of RAM.

The results of our simulations underscore the potential
benefits of map limitation. In particular, the rule-based limi-
tation led to improvements in both the number of tasks com-
pleted and the processing time. However, it’s crucial to note
that the quality of the limitation is a key factor, as demon-
strated by the effectiveness of the special handcrafted limi-
tation.

For the warehouse maps, it was a clear improvement. The
agents found shorter paths in the grid. Thus, they accom-
plished more tasks. Unfortunately, on the random map, this
limitation only improved the instance with the most agents,
but on the other instances, it resulted in the same quality at
best. One possibility is that there remain too few options and
too long paths, which is worse for the random map where
a small amount of chaos had good results (Move waiting
robots). However, with many agents, more control can be
beneficial. This result means that finding a limitation that
improves search time and does not decrease solution quality
is not easy. We should further research how to create valu-
able limitations.

With the multi-threaded version of the algorithm, we
could use the given machine’s computational power better.
Thus, we were able to calculate the same results in less time.
On our four-core machine, in some instances, we saw nearly
four times faster responses. On the instance with 200 agents
on the random map, the multi-threaded solver was slower as
the problem was small enough that the thread usage over-
head was more significant than the improvements.

Then, reusing the calculated paths also resulted in nearly
the same quality but in less time. In the first steps, we have
to find paths for all the agents, which takes a long time, but
in subsequent steps, we have to work less. With the caching,
the number of pathfindings in a timestep is bounded to the
number of completed tasks, not bounded to the number of
agents. In some instances, this solver completed fewer tasks.
This can happen as our single-agent planner does not calcu-
late the agent’s orientation at the start of the search. When
we replan in every timestep, it can find ”shorter” paths, but
now we keep the plans so the agents travel along their origi-
nal paths.

Another notable improvement was introducing the tie-
breaking method, which significantly improved the number
of tasks finished but resulted in more pathfindings, as shown
in Table 1. Unfortunately, this improvement is temporary.
At first, the agents start to spread from the waiting lines and
find other paths, but in the long term, this causes traffic jams
with more agents in the middle of the jam and fewer agents
waiting in the lines. So, this method improved our solution

in the competition, but in a real lifelong problem, it is not a
good option. On the other hand, it can solve problems where
agents are waiting for each other or can be beneficial on
maps where the shortest paths have shared sections, like on
the random map, and this is why it helped on that map the
most.

Summary
This work addressed the Multi-Agent Pathfinding (MAPF)
problem by implementing a pathfinding algorithm with pro-
gressive improvements. We began with a simple approach
using Prioritized Planning and a reservation table. How-
ever, this method proved to be slow for scenarios with many
agents. To address this, we devised a simpler algorithm and
a way to limit search space. We subsequently implemented
several optimizations, including multi-threading, path reuse,
a mechanism to move waiting agents, and special handling
of maps. Our results demonstrate that these improvements
significantly enhance the algorithm’s performance regarding
tasks completed and processing time.

While this work focused on improving a single approach,
future efforts could involve comparing our method with
established MAPF algorithms. Additionally, we have to
explore alternative map limitations with new algorithms,
which can ensure a reduction in the number of edges but
keep the length of the shortest paths at a minimum. Other
ideas may contribute to better limitation generation, which
we must first research and understand. Then, we can in-
corporate more sophisticated conflict resolution techniques
as the current simple algorithm stops agents randomly in-
stead of deciding which is better to let go. Finally, combin-
ing other MAPF solvers with our ideas is also a promising
avenue for further research. We can combine the map lim-
itation with most MAPF solvers, giving them a processing
speedup. Overall, this work contributes to developing effi-
cient solutions for the MAPF problem.

References
Erdmann, M.; and Lozano-Perez, T. 1987. On multiple mov-
ing objects. Algorithmica, 2: 477–521.
Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A For-
mal Basis for the Heuristic Determination of Minimum Cost
Paths. IEEE Transactions on Systems Science and Cyber-
netics, 4(2): 100–107.
Ma, H.; Harabor, D.; Stuckey, P. J.; Li, J.; and Koenig, S.
2019. Searching with consistent prioritization for multi-
agent path finding. In Proceedings of the AAAI conference
on artificial intelligence, volume 33, 7643–7650.
Sharon, G.; Stern, R.; Felner, A.; and Sturtevant, N. R. 2015.
Conflict-based search for optimal multi-agent pathfinding.
Artificial Intelligence, 219: 40–66.
Sharon, G.; Stern, R.; Goldenberg, M.; and Felner, A. 2013.
The increasing cost tree search for optimal multi-agent
pathfinding. Artificial intelligence, 195: 470–495.
Silver, D. 2005. Cooperative pathfinding. In Proceedings of
the aaai conference on artificial intelligence and interactive
digital entertainment, volume 1, 117–122.



M
R

23
-I

-0
1

M
R

23
-I

-0
2

M
R

23
-I

-0
3

M
R

23
-I

-0
4

M
R

23
-I

-0
5

M
R

23
-I

-0
6

M
R

23
-I

-0
7

M
R

23
-I

-0
8

M
R

23
-I

-0
9

M
R

23
-I

-1
0

Map Paris Paris Random Random Random Sortation Random Random Game Warehouse
Agents 1500 3000 200 100 400 10000 600 800 6500 10000
Sim.
time 1500 3500 500 500 1000 5000 1000 2000 5000 5000

Tasks completed
Simple 90.5 65.5 10.5 12.5 3.5 47 3 0 53.5 17
Limited 8246.5 8881.5 91 634 20.5 3337 3.5 1 725 7612
Multi 8450.2 10882 89.6 524 25 8275.75 3.75 1 1257.7 15620.5
Reuse 7818.2 11046 139.5 593.5 13 8887.5 3.5 1.25 4334.7 14268
Move 8814.7 16512 914.2 968.25 1099 10224.5 716 143.5 5789.2 21784.5
Special 8737 17907 968.6 954 1065 101135.5 702.6 297.6 5311.2 94477.2

Average planning time (ms)
Simple 931.98 1990.5 1.49 0.77 4.695 3215.18 7.14 8.75 9277.5 3032.08
Limited 423.675 950.21 1.37 0.59 5.19 2435.74 7.47 10.27 6132.9 1870.24
Multi 103.488 243.79 1.02 0.836 1.8 633.86 2.41 2.75 2062.3 460.54
Reuse 5.18 8.01 0.46 0.485 0.48 8.34 0.47 0.4375 62.82 10.12
Move 7.90 42.96 0.60 0.54 0.97 172.97 1.38 1.36 447.12 122.8
Special 8.69 41.89 0.65 0.63 1.05 55.45 1.10 1.4 458.81 56.35

Table 1: Our results for comparison purposes. In the evaluations, we based the configurations on the previous ones with one
modification for each. The first configuration is the ”Standard”. Which is the base algorithm and the map without limitation,
”Limited” is with the map limited by the rules, ”Multi” is the multi-threading turned on, ”Reuse” is path reusing turned on,
”Move” is move waiting agents turned on, and ”Special” is the special handling of maps turned on on top of the previous
configuration.

Stern, R.; Sturtevant, N.; Felner, A.; Koenig, S.; Ma, H.;
Walker, T.; Li, J.; Atzmon, D.; Cohen, L.; Kumar, T.; et al.
2019. Multi-agent pathfinding: Definitions, variants, and
benchmarks. In Proceedings of the International Symposium
on Combinatorial Search, volume 10, 151–158.
Tarjan, R. 1972. Depth-first search and linear graph algo-
rithms. SIAM journal on computing, 1(2): 146–160.


