
Scaling Lifelong Multi-Agent Path Finding to More Realistic Settings:
Research Challenges and Opportunities

He Jiang, Yulun Zhang, Rishi Veerapaneni, Jiaoyang Li
Carnegie Mellon University

{hejiangrivers,yulunzhang,vrishi,jiaoyangli}@cmu.edu

Abstract

Multi-Agent Path Finding (MAPF) is the problem of mov-
ing multiple agents from starts to goals without collisions.
Lifelong MAPF (LMAPF) extends MAPF by continuously
assigning new goals to agents. We present our winning ap-
proach to the 2023 League of Robot Runners LMAPF com-
petition, which leads us to several interesting research chal-
lenges and future directions. In this paper, we outline three
main research challenges. The first challenge is to search
for high-quality LMAPF solutions within a limited planning
time (e.g., 1s per step) for a large number of agents (e.g.,
10,000) or extremely high agent density (e.g., 97.7%). We
present future directions such as developing more competi-
tive rule-based and anytime MAPF algorithms and paralleliz-
ing state-of-the-art MAPF algorithms. The second challenge
is to alleviate congestion and the effect of myopic behaviors
in LMAPF algorithms. We present future directions, such as
developing moving guidance and traffic rules to reduce con-
gestion, incorporating future prediction and real-time search,
and determining the optimal agent number. The third chal-
lenge is to bridge the gaps between the LMAPF models used
in the literature and real-world applications. We present fu-
ture directions, such as dealing with more realistic kinody-
namic models, execution uncertainty, and evolving systems.

1 Introduction
In Multi-Agent Path Finding (MAPF) (Stern et al. 2019),
agents are each assigned a pair of start and goal loca-
tions, and algorithms attempt to find collision-free paths for
them. MAPF has been widely studied due to its valuable
applications in automated warehouses, traffic systems, ad-
vanced manufacturing, etc. However, many real-world sys-
tems continuously run for a very long time, where agents
will be assigned new tasks. Such scenarios are better mod-
eled by an extension of the MAPF problem, called Life-
long Multi-Agent Path Finding (LMAPF) (Ma, Kumar, and
Koenig 2017). In recent years, many researchers have stud-
ied LMAPF and its variants (Liu et al. 2019; Salzman and
Stern 2020; Li et al. 2021c; Damani et al. 2021; Varambally,
Li, and Koenig 2022; Zhang et al. 2023b), especially on
its application in coordinating mobile robots in warehouses,
which is nowadays a multi-billion industry.

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

(a) Random 800 (b) Sortation (c) City

Figure 1: Three challenging maps in the LRR competition
with white vertices and black obstacles. (a) is a random map
of size 32 by 32 with very high agent density (800 agents
out of 819 vertices ). The colorful triangles are agents, with
short black lines indicating orientations. (b) is a large sorta-
tion center map of size 140 by 500 with 54,230 vertices and
10,000 agents. (c) is a city map representing a part of Paris.

However, most MAPF problem instances studied in pre-
vious work are relatively simple. For example, in the widely
used MAPF benchmark (Stern et al. 2019), the agent den-
sity is no more than 50%, the number of agents is no more
than 1, 000, and the planning time limit is usually set to 1-
5 minutes. However, in real-world applications, automatic
garage (Guo and Yu 2023) could have a near-100% agent
density, Amazon fulfillment centers could have more than
4,000 robots (Brown 2022), and cooperative autonomous
driving requires real-time response. Only a few MAPF re-
search, such as LNS2 (Li et al. 2022) and LaCAM (Okumura
2023), have tested with the more challenging instances.
Similarly for LMAPF, only a few studies (Li et al. 2021c;
Damani et al. 2021) test with up to 1, 000 agents. One recent
work (Chen et al. 2024) scales the agent number to more
than 10, 000 on large maps.

Thus, an LMAPF competition, The League of Robot Run-
ners (LRR),1 sponsored by Amazon Robotics, was orga-
nized online in 2023 to examine more challenging LMAPF
settings, including: (1) a large number of agents of up to
10, 000, (2) extreme agent density (i.e., the ratio of the num-
ber of agents to the number of vertices on the map) of up
to 97.7% (as shown in Figure 1a), (3) a large map of up
to 54, 320 vertices (as shown in Figure 1b), (4) limited plan-
ning time of 1 second per step, and (5) a more realistic action

1https://www.leagueofrobotrunners.org/



Map Name Map Size Vertices Map Illustration

Random 32×32 819 Figure 1a
City 256×256 47,240 Figure 1c

Game 481×530 43,151 Figure 8
Warehouse 140×500 38,586 Figure 5
Sortation 140×500 54,320 Figure 1b

Table 1: The basic information for each map. Map sizes are
given in the format of height × weight.

model that considers the heading and rotation of the agents.
The LRR competition leads us to discuss three critical re-

search challenges less explored in the previous LMAPF lit-
erature: the limited planning time constraint, the congestion
and myopic behaviors in LMAPF algorithms, and the gaps
between modeled and real-world LMAPF. Inspired by these
challenges, we point out several future directions, such as
developing more competitive anytime algorithms, exploit-
ing multi-CPUs and GPUs for parallelism, alleviating con-
gestion and myopia of windowed planning by developing
guidance and traffic rules, incorporating future traffic pre-
diction and real-time search, and determining the optimal
agent number. We also advocate for studying more realistic
LMAPF models taking into account motion constraints, exe-
cution uncertainty, and evolving systems. Salzman and Stern
(2020) also discuss several LMAPF challenges, such as life-
long learning and distributed planning, which are orthogonal
to this work.

We first formulate the LMAPF problem given in the LRR
competition in Section 2. Then, in each of Sections 3 and 4,
we first discuss a challenge underexplored in existing work,
then our solution to the challenge, and finally future direc-
tions inspired by the challenge and our solution. In Section 5
we discuss an additional challenge regarding the gaps be-
tween LMAPF models in the literature and the real world.
Our solution ranked first in two out of three tracks, includ-
ing the overall best track, and second in another one. The
code and experiment settings are publicly available.2

2 Problem Definition
Definition 1 (MAPF) MAPF takes in a graph G = (V,E),
where V are vertices and E are edges, and n agents with
their start and goal vertices. At each step, an agent can move
to an adjacent vertex or wait at its current vertex. Collisions
occur when two agents move to the same vertex or traverse
the same edge at the same step. The target is to find collision-
free paths for all agents to their goals while minimizing the
sum-of-costs, namely the total number of actions taken.
Definition 2 (LMAPF) LMAPF extends MAPF by con-
stantly assigning new goals to agents via a (external) task
assigner. The target is to find collision-free paths for all
agents while maximizing throughput, namely the average
number of goals reached by all agents per step.
Definition 3 (MAPF with Rotations (MAPF-R)) MAPF-
R is a variant of MAPF with different agent states and

2https://github.com/DiligentPanda/MAPF-LRR2023.git

Instance Algorithm w h GG DA Score

Random 100 WPPL 20 1 No No 0.994
Random 200 WPPL 15 1 Manual No 0.975
Random 400 WPPL 15 1 Manual No 0.992
Random 600 WPPL 15 1 Manual Yes 1.000
Random 800 PIBT 1 1 GGO Yes 0.806

City 1000 WPPL 20 1 No No 0.996
City 3000 WPPL 20 1 Manual No 1.000

Game 4000 WPPL 15 3 Manual Yes 1.000
Warehouse 8000 WPPL 10 3 Manual No 0.996
Sortation 10000 WPPL 10 3 Manual No 0.997

Table 2: The best hyperparameters for each instance and the
best scores of similar-setting online instances. Each instance
is named as its map with its number of agents. An algorithm
replans length-w paths every h step. GG and DA refer to
Guidance Graph and Disabling Agents respectively. Details
are explained in Sections 3 and 4.

actions. It models a four-neighbor grid map as graph G and
the state of an agent as a location v ∈ V plus an orientation
o ∈ {East, South, West, North}. At each step, an agent can
forward to an adjacent vertex, rotate 90 degrees clockwise
or counterclockwise, or wait at its current vertex.

The problem given in the LRR competition is a combina-
tion of Definitions 2 and 3, named LMAPF-R. Further, the
task assigner is external to our planner and assigns exactly
one new goal to an agent if the agent reaches its current one.

Competition and Experiment Setup All results are eval-
uated on a server with 32 AMD EPYC 7R13 Processor vC-
PUs and 128G Memory in the LRR competition. For sim-
plicity, in this paper, we evaluate all the results on a local
machine with 32 Intel(R) Xeon(R) Platinum 8350C vCPUs
and 84G Memory. Since the online data was not publicly
available when this paper was written,3 we conducted our
experiments with offline data that share similar settings to
the online data. The map of each instance is known before
simulation and given 30 minutes for preprocessing. We list
all maps in Table 1 and problem instances in Table 3. The
best hyperparameters are shown in Table 2.

The competition ranks teams with 10 hidden instances in
three tracks: Overall Best, Fast Mover, and Line Honours.
For each instance, a normalized score between 0 and 1, de-
fined as the throughput of a solution over the best throughput
among all solutions submitted by all participants, is calcu-
lated. The Overall Best track ranks teams by the total score
of all instances in one submission but allows the planner to
exceed the 1-second limit. However, the system will lose the
chance of moving for several steps until the current planning
is finished. The Fast Mover track further restricts all actions
to be planned within the time limit. The Line Honours track
ranks teams by the total number of best solutions to individ-
ual instances but allows these best solutions to come from
different submissions. Our final submission has close-to-1
scores on 9 out of 10 instances (Table 2) with a total score

3The online data is now available at https://github.com/MAPF-
Competition/Benchmark-Archive.git



of 9.755, compared to 9.502 of the second-place team. Our
solution won the Overall Best and Fast Mover tracks and
ranked second in the Line Honours track. According to what
we know, the second-place and third-place teams mainly
used independent A* and CBS-based algorithms (Sharon
et al. 2015), which are very different from ours.

3 Challenge 1: Limited Planning Time
In this section, we discuss the first challenge of how to ob-
tain high-quality LMAPF solutions within a limited plan-
ning time. Many real-world applications have such a require-
ment. For example, smart manufacturing and automated
warehouses require efficient execution while autonomous
driving and video games need real-time response. The LRR
competition poses this challenge by giving only 1 second to
plan actions for all agents at each step. This time limit is sig-
nificantly shorter than the limits used in most existing work.
We first analyze the existing work and then present our al-
gorithm choices in the competition. Lastly, we discuss the
related future directions.

3.1 The Challenge and Related Works
The challenging online LMAPF instance is generally de-
composed into a sequence of MAPF instances solved by
MAPF solvers. However, repeatedly replanning paths for
all agents is extremely time-consuming. Several approaches
have been proposed to reduce the computational effort and
increase the scalarbility. For example, Wan et al. (2018) pro-
pose an incremental variant of CBS to reuse the previous
search effort. Svancara et al. (2019) propose to only replan
for the agents who receive new goals and the agents whose
paths are affected by the former agents. However, the scal-
ability of these methods is still very limited as indicated
in the state-of-art work (Li et al. 2021c), which proposes
the RHCR framework. RHCR largely reduces computation
time by adopting the idea of windowed planning which does
not reason about conflicts beyond a fixed window. However,
only an efficient framework is not enough. Indeed, when ap-
plying RHCR with PBS (Ma et al. 2019) and ECBS (Barer
et al. 2014), we can solve instances at most with hundreds of
agents within the 1-second limit. Therefore, we need a faster
MAPF solver that still provides good solutions.

There are various MAPF algorithms, most of which can
be categorized as follows. Optimal algorithms, such as
CBS (Sharon et al. 2015) and BCP (Lam and Le Bodic
2020), can return optimal solutions but have an exponen-
tial increase in runtime. Bounded-suboptimal algorithms,
such as ECBS (Barer et al. 2014) and EECBS (Li, Ruml,
and Koenig 2021), guarantee solutions within a given bound
and scale to hundreds of agents, but fail to tackle more chal-
lenging problems. Prioritized algorithms (Erdmann and
Lozano-Pérez 1987) and rule-based algorithms (Okumura
et al. 2019; Wang and Rubenstein 2020) run much faster, but
are incomplete and lack guarantee on their solution quality.
These algorithms fall on the two extremes of a spectrum, ei-
ther provide high-quality solutions but do not scale to chal-
lenging scenarios (such as 10k agents, 97% density, etc.)
(most MAPF algorithms), or scale to them but with poor
solution quality (such as PIBT).

In the competition, we found two other types of algo-
rithms, namely anytime and parallel algorithms, very useful
when facing a limited planning time. However, both cate-
gories are underexplored compared to the previous ones.

Anytime algorithms offer a better trade-off between so-
lution quality and runtime due to the anytime behavior,
which refers to first generating an initial solution and then
improving it over time. However, most existing works either
cannot scale to a large number of agents (Vedder and Biswas
2021) or have very weak anytime behaviors (Lam and
Le Bodic 2020; Okumura 2023). The state-of-the-art any-
time algorithm for MAPF is MAPF-LNS (Li et al. 2021a).
Starting with an initial solution, MAPF-LNS continuously
selects a group of agents and replans their paths.

Parallel algorithms are designed to exploit multi-core
CPUs or GPUs. Lee et al. (2021) parallelize CBS by solv-
ing subproblems in parallel, then merging the search trees
of subproblems. Li et al. (2021b) run multiple MAPF-LNS
on independent threads and select the best solution among
them. Leet, Li, and Koenig (2022) divide the map into mul-
tiple regions and solve MAPF in each region in parallel.

3.2 Our Solution: WPPL
We present Windowed Parallel PIBT-LNS (WPPL) as our
solution to address the challenging LMAPF instances in the
LRR competition. We give an overview of WPPL in Figure 2
and introduce the design choices of each component below.
Windowed Planning. With large agent numbers and map
sizes, even planning the full shortest paths individually for
all agents is computationally challenging within 1 second.
Therefore, we apply the idea of a planning window in RHCR
(Li et al. 2021c) to replan all agents every h steps with a
planning window of length w (w ≥ h). Specifically, at step
0, we use the initial 1 second to plan a path of length w for
each agent. Later, we always use the h seconds from step
kh + 1 to (k + 1)h, k ∈ N, to plan the path of length w
starting from the state at step (k + 1)h.
PIBT-LNS. Our windowed MAPF solver is PIBT-LNS,
which obtains an initial solution using PIBT (Okumura et al.
2019) and then applies MAPF-LNS (Li et al. 2021a) to im-
prove it. We select PIBT because it is an extremely fast al-
gorithm and the only algorithm we know that can handle
very large and dense problem instances. In our experiments,
PIBT returns a solution within 250 ms in the large-scale Sor-
tation 10000 instance and within 20 ms in the dense Random
800 instance, leaving ample remaining runtime. Therefore,
we use the anytime algorithm MAPF-LNS to improve the
solution and fully exploit the given planning time. To illus-
trate the effectiveness of MAPF-LNS, we run experiments
with different planning time limits in Figure 3 and observe
progressive improvements in throughput for all instances ex-
cept for Random 800 and Game 4000 at 0.5 seconds. We will
discuss this abnormal behavior in Section 4.
Parallel PIBT-LNS. We further parallelize PIBT-LNS to
exploit multi-cores on the evaluation server. The paralleliza-
tion strategy that we applied shares a great similarity with a
concurrent work, DROP-LNS (Chan et al. 2024). We asyn-
chronously select groups of agents and replan paths for each
group in parallel, but sequentially check each new sub-plan



PIBT Solver

Scheduler

Replan Replan Replan

Current MAPF Instance Refine plan with 
a parallel LNS refiner

Figure 2: Windowed Parallel PIBT-LNS (WPPL). For each windowed MAPF instance, we run PIBT w steps to get an initial
plan a1:w and use Parallel MAPF-LNS to refine it. We then execute the first h actions of the refined plan a1:h, updating the
MAPF instance and reusing the rest of actions ah+1:w in the next iteration of PIBT.

Random 100
Random 200

Random 400
Random 600

Random 800
City 1000

City 3000
Game 4000

Warehouse 8000
Sortation 10000

0.0 0.5 1.0 1.5 2.0
Time (s)

0

1

2

3

Th
ro

ug
hp

ut
 p

er
 a

ge
nt ×10 2

(a) Random

0.0 0.5 1.0 1.5 2.0
Time (s)

3.5

4.0

4.5

Th
ro

ug
hp

ut
 p

er
 a

ge
nt ×10 3

(b) City

0.0 0.5 1.0 1.5 2.0
Time (s)

0.8

1.0

1.2

1.4

Th
ro

ug
hp

ut
 p

er
 a

ge
nt ×10 3

(c) Game

0.0 0.5 1.0 1.5 2.0
Time (s)

3.775

3.800

3.825

3.850

3.875

Th
ro

ug
hp

ut
 p

er
 a

ge
nt ×10 3

(d) Warehouse

0.0 0.5 1.0 1.5 2.0
Time (s)

3.0

3.2

3.4

3.6

3.8

Th
ro

ug
hp

ut
 p

er
 a

ge
nt ×10 3

(e) Sortation

Figure 3: The anytime behavior of WPPL. For better illustration, we apply guidance graphs (introduced later in Section 4), use
only a single thread, and normalize throughput by the number of agents in this experiment.

PIBT 1 4 16 32
Threads

0

1

2

3

Th
ro

ug
hp

ut
 p

er
 a

ge
nt ×10 2

(a) Random

PIBT 1 4 16 32
Threads

3.5

4.0

4.5

Th
ro

ug
hp

ut
 p

er
 a

ge
nt ×10 3

(b) City

PIBT 1 4 16 32
Threads

1.0

1.2

1.4

Th
ro

ug
hp

ut
 p

er
 a

ge
nt ×10 3

(c) Game

PIBT 1 4 16 32
Threads

3.80

3.85

3.90

Th
ro

ug
hp

ut
 p

er
 a

ge
nt ×10 3

(d) Warehouse

PIBT 1 4 16 32
Threads

3.00

3.25

3.50

3.75

Th
ro

ug
hp

ut
 p

er
 a

ge
nt ×10 3

(e) Sortation

Figure 4: The effect of Parallelizing LNS. For better illustration, we apply guidance graphs (introduced later in Section 4) and
normalize throughput by the number of agents in this experiment. This figure uses the same legend as Figure 3.

and update better ones to the global plan. We show the ef-
fectiveness of parallelization in Figure 4.
Reuse Previous Search Effort. Since we repeatedly solve
overlapping windowed MAPF instances, it is natural to think
of reusing search efforts from the previous planning. Wan
et al. (2018) and Madar, Solovey, and Salzman (2022) suc-
cessfully apply this idea to reduce the search time of CBS
and PBS respectively in the lifelong setting. However, in

our case, we hope that a partial plan refined by the previous
search could provide hints for PIBT to obtain a better-quality
initial solution. In our ablation study, reusing the past w− h
planned steps improves the throughput of Random 400, Ran-
dom 600, and Random 800 by 4.2%, 29.9%, and 4.9%, re-
spectively. For other maps, the improvement is below 2%.
We conjecture it is because PIBT tends to find bad initial
solutions in unstructured maps and crowded scenarios.



3.3 Future Directions
When designing WPPL to solve the LMAPF instances in
the LRR competition, we discover several directions worth
further study.
Better Rule-based Algorithms. We use PIBT to find an ini-
tial solution to a given MAPF instance. As a rule-based al-
gorithm, PIBT has a faster speed but significantly lower so-
lution quality than optimal and bounded-suboptimal MAPF
algorithms (Li et al. 2022). Thus, one direction is to de-
velop rule-based algorithms with better solution quality. In
addition, Multi-Agent Reinforcement Learning (MARL) is
an emerging and promising alternative to rule-based algo-
rithms. PRIMAL2 (Damani et al. 2021), a state-of-the-art
MARL framework for LMAPF, has demonstrated a faster
runtime but lower solution quality than RHCR. Therefore,
we can also focus on improving the solution quality and ad-
dressing the incompleteness issue of MARL methods.
Better Anytime Algorithms. Anytime algorithms are desir-
able in practice because they can make full use of the plan-
ning time budget. One straightforward idea is to improve
MAPF-LNS, for example, by developing better ways to se-
lect groups of agents (Huang et al. 2022). Another possi-
bility is to improve the ability of other existing anytime al-
gorithms like anytime ECBS (Ivanashev, Andreychuk, and
Yakovlev 2022) to rapidly improve performance within a
short amount of time. Meanwhile, future studies can also
work on extending other single-agent anytime algorithms,
such as ARA* (Likhachev, Gordon, and Thrun 2003), to
multi-agent scenarios.
Parallelism for MAPF. With the rapid development of tech-
nologies, multi-CPUs and GPUs become cheaper, faster, and
more prevalent. Other fields like deep learning and evolu-
tionary computation have developed efficient software to
leverage them. However, the MAPF community has fallen
behind in exploiting parallelism due to the natural challenge
of parallelizing centralized search algorithms. While some
works have explored parallelizing CBS (Lee et al. 2021) or
LNS (Chan et al. 2024) on multi-CPUs, the problem of effi-
ciently parallelizing state-of-the-art MAPF algorithms stays
underexplored. Therefore, future work can also study how
to parallelize these search-based methods.

4 Challenge 2: Traffic Congestion and the
Myopic Behavior of LMAPF Algorithms

In this section, we discuss the second challenge of how to
alleviate traffic congestion and the effect of myopic plan-
ning. We start by discussing the myopic behavior of LMAPF
algorithms and analyze its relation to congestion. Then we
present our methods, using guidance graphs (Zhang et al.
2024) and disabling agents to address these issues. Finally,
we discuss the future work.

4.1 The Challenge and Related Work
Congestion is a challenging problem in many lifelong appli-
cations, such as traffic and communication systems. Without
a proper coordination mechanism, the situation will gener-
ally deteriorate over time. We also observed such a phe-
nomenon in the LRR competition. While WPPL obtains

competitive throughput on several maps, we find severe con-
gestion on others. The first and second graphs of Figure 5
highlight severe congestion with both PIBT and WPPL in
the Warehouse 8000 instance. In addition, while WPPL is
expected to refine solutions of PIBT, we observe that WPPL
causes more congestion than PIBT and has lower through-
put in Random 800, Game 4000, Warehouse 8000, and Sor-
tation 10000, as shown in the no Guidance Graph (GG) col-
umn of Table 3. In the second graph (WPPL) of Figure 5, we
can also identify more severe congestion in the center of the
warehouse, compared to the first graph (PIBT), where the
congestion is less severe and more uniform.

We believe that the myopic behavior of LMAPF algo-
rithms is one cause of the congestion. In particular, most
LMAPF algorithms, including WPPL, split the LMAPF
problem into a sequence of MAPF instances and solve each
one with a limited horizon by ignoring future collisions and
congestion. Eventually, an optimal solution to the current
MAPF instance may form or worsen congestion in the fu-
ture and may not lead to global optimality.

In the case of WPPL, we solve a sequence of windowed
MAPF instances by minimizing the approximated sum-of-
costs objective, computed as the sum of the actual costs in
the window and the approximated costs beyond the window
(estimated by the costs of agents’ individual shortest paths to
their current goals). The approximated objective could be in-
accurate if the actual future path costs are much larger than
the shortest path approximations. As a result, even though
WPPL improves its approximated sum-of-costs objective in
the earlier MAPF instances, the movement of agents might
cause more severe congestion, and the overall throughput
is not guaranteed to improve. Meanwhile, if there is more
congestion, the approximated objective could potentially be-
come more inaccurate, making the myopic effect more se-
vere. Namely, the effect of myopia and the congestion may
mutually enhance each other. To demonstrate the effect of
windowed planning in WPPL, we measure throughput in the
Sortation 10,000 instance by running WPPL with various
window sizes but fixed LNS refinement iterations to roughly
25,000 in Figure 6. We observe that both the throughput and
runtime of WPPL increase with a larger window size w. Yet,
WPPL does not outperform PIBT until w > 15.

Some methods have been proposed to estimate the fu-
ture cost better. Yu and Wolf (2023) apply a deep learning
method to predict congestion delays at all vertices for multi-
ple future time windows. Chen et al. (2024) adopt an online
estimation approach by hand-crafting heuristics of vertex
and contraflow congestion, and iteratively replanning paths.

4.2 Designing Guidance and Disabling Agents
As shown in Section 4.1, while increasing the window size
of WPPL can alleviate its myopic behavior, solving the
MAPF instance in a larger window takes more time. There-
fore, instead of trying to design less myopic LMAPF algo-
rithms, we intend to directly alleviate congestion by apply-
ing the guidance graph (Zhang et al. 2024) and disabling
agents. Intuitively, these methods do not change the myopic
nature of WPPL. However, they make the myopic behavior
of WPPL less harmful to overall throughput.



Instance Total Steps Agent Density
No GG Manual GG Auto GG

PIBT WPPL PIBT WPPL PIBT WPPL

Random 100 500 12.2% 2.21 3.20 1.83 3.08 2.64 3.11
Random 200 500 24.4% 2.55 5.69 2.35 5.72 2.74 5.56
Random 400 1,000 48.9% 1.58 4.79 1.73 7.04 1.77 4.86
Random 600 1,000 73.4% 1.81 2.44 2.46 5.26 2.53 2.57
Random 800 2,000 97.7% 1.34 1.04 1.56 1.47 1.72 1.23

City 1000 2,000 2.1% 4.39 4.72 4.61 4.70 - -
City 3000 4,000 6.4% 5.95 6.13 9.57 14.10 - -

Game 4000 5,000 9.3% 2.01 1.18 3.54 5.45 - -
Warehouse 8000 5,000 20.7% 10.37 5.89 30.07 31.34 - -
Sortation 10000 5,000 18.4% 10.20 10.19 29.99 39.34 - -

Table 3: The table’s first three columns show each instance’s basic information. Agent density is the agent number divided by
the vertex number. The rest of the table shows the throughput of PIBT and WPPL on each instance with different guidance
graphs (edge weights) and algorithms. No GG, Manual GG, and Auto GG refer to no guidance graph, manually defined graph,
and guidance graph found by GGO algorithm with PIBT respectively. The best throughput is marked in bold. The empty values
in Auto GG are due to the large computational demand making GGO unable to run on those maps.

PIBT without Guidance Graph WPPL without Guidance Graph PIBT with Guidance Graph WPPL with Guidance Graph 0

2500

5000

Figure 5: Comparison of with and without guidance graph in the Warehouse 8000 instance. The heatmap shows the wait action
usage (the number of steps agents wait in each vertex). Red denotes areas of high congestion.

PIBT 5 10 15 20 25
Planning window length

10

20

30

Th
ro

ug
hp

ut

1

2

Ti
m

e 
pe

r s
te

p 
(s

)

Figure 6: The throughput (red) and the average planning
time per step (blue) of WPPL with different window sizes
and PIBT in the Warehouse 8000 instance.

Design Guidance. We use both manually designed and au-
tomatically optimized guidance graphs that are essentially
edge weights encoding the costs of moving from one ver-
tex to another (including staying at the original vertex). To
manually design the guidance graphs, we start with the criss-
cross highway (Cohen 2020) and fine-tune the edge weights.
We slightly increase the weights in congested regions and
decrease the weights in idle regions by observing the wait
action usage map (e.g., Figure 5) obtained from the sim-
ulation. If throughput increases, we keep the new weight;
otherwise, we try different weight modifications. However,
such manual fine-tuning is very challenging for the Random
map with irregular layouts and almost impossible for the in-
stance Random 800 with an extremely high agent density,
where every location seems very congested. Thus, we addi-
tionally use the guidance graph optimization (GGO) meth-

1500 2000 2500 3000 3500 4000
Number of agents

3

4

5

6
Th

ro
ug

hp
ut

Figure 7: The blue line shows the throughput on the Game
4000 instance with different numbers of agents not disabled
(out of 4000 agents). The orange line shows the throughput
on the Game map with different total numbers of agents (no
agent is disabled). The red dashed line indicates the maxi-
mum throughput and the corresponding number of agents.

ods (Zhang et al. 2024) to optimize the edge weights auto-
matically. Due to the large computational demand of GGO
methods, we cannot run GGO directly with WPPL or on
large maps. Therefore, we only experiment GGO with PIBT
for instances on the Random map and evaluate the same op-
timized guidance graph with WPPL in Table 3.
Disabling Agents. Even after we add guidance graphs, we
still observe congestion in specific maps, for example, at
deadends (vertices with only one neighbor) and narrow cor-
ridors, especially when there are exceedingly many agents
in a local region. However, dealing with geometrically diffi-
cult structures remains an open problem. We naively use an
ad-hoc trick that disables some agents from going to these



No disabling agents Disabling agents 0

1000

2000

3000

4000

5000

Figure 8: Comparison of with and without disabling agents
for the Game 4000 instance. The heatmap shows the wait ac-
tion usage (the number of times agents wait in each vertex).

regions by setting their goals to their current locations and
their priorities to the lowest in both PIBT and the Prioritized
Planning algorithm used by MAPF-LNS. As a result, when
blocking other higher-priority agents that are not disabled,
these disabled agents will be pushed away. For Random 600
and 800, we disable agents whose goals are at the deadends.
For Game 4000, we search for the most suitable agent num-
ber by evaluating various numbers of agents on the map. As
shown in Figure 7, we observe the highest throughput with
2,500 agents, so we randomly disable 1,500 agents. In addi-
tion, the coincidence of the blue and orange lines indicates
that these disabled agents did not block others due to our
changes to their goals and priorities. In the ablation study,
the algorithm without disabling agents experiences 15.7%,
51.8%, and 47.0% throughput drops on Random 600, Ran-
dom 800, and Game 4000, respectively. Figure 8 compares
the wait action usage before and after disabling agents for
the Game 4000 instance, indicating the alleviation of con-
gestion.

4.3 Future Directions
Unfortunately, it is impossible to eliminate the myopic be-
havior of LMAPF algorithms, since it is impractical to know
all future tasks. But we can still alleviate it, for example, by
traffic predictions, or make its effect less harmful, for exam-
ple, by reducing congestion. We list several potential solu-
tions in the following.
Better Guidance Graphs and System Designs. Since it is
challenging or even impractical to manually design guidance
for LMAPF instances with arbitrary map size and number
of agents, automatic guidance design is appealing. How-
ever, GGO still suffers from large computation currently.
Therefore, future work can focus on scaling GGO methods
to larger-scale problems. In addition, the guidance graphs
are optimized offline in GGO, while previous works have
explored updating the guidance online during the execu-
tion of the LMAPF algorithm (Chen et al. 2024). Future
works can incorporate the online update mechanism into
guidance graphs. Furthermore, future work can also focus
more broadly on better system design, for example, explor-
ing layout optimization to improve throughput (Zhang et al.
2023b,a). Another idea is to design traffic rules in the system
as in the real world. A preliminary study has been applied
to MAPF by requiring agents to move in a first-come-first-
served manner (Jansen and Sturtevant 2008). Future work

can focus on developing more systematic rules to guide the
movement of agents.
Data-Driven Future Prediction. Previous works have ex-
plored using data-driven methods to predict future conges-
tion and incorporate the prediction in planning (Yu and Wolf
2023), but it is only applied to simple reactive planning al-
gorithms with A∗ search. Future works can explore incorpo-
rating predicted traffic information into more recent LMAPF
algorithms. Furthermore, we can also consider future con-
gestion when assigning tasks to agents.
Applying Real-time Search. The key insight of real-time
search is that the agent can escape the local minima by up-
dating the heuristic (Korf 1990) during execution with a con-
stant amount of search around the space of this agent. The
heuristic penalizes previously visited states and encourages
the agent to explore other areas of the map. In the 2D MAPF
context, we have a perfect single-agent Backward Dijkstra
heuristic, so agents getting stuck is not due to obstacles but
instead, congestion. Thus, updating agents’ heuristics based
on congestion could mitigate congestion caused by limited-
horizon planning. Initial attempts (Sigurdson et al. 2018)
have not dealt with inter-agent interactions, but this area is
ripe for advancement.
Searching for the Optimal Number of Agents. The fact
that disabling agents improves throughput indicates that we
can search for an optimal number of agents for a given
LMAPF instance. As shown in Figure 7, 2,500 agents are
enough to achieve the best throughput. Future work could
attempt to determine the optimal number of agents to max-
imize the throughput. More interestingly, we can identify
such a number similarly for a local region to more formally
study the concept of congestion.

5 Challenge 3: Gaps between LAMPF
Models and Real-World Applications

In this section, we discuss the third challenge of bridging
the gaps between commonly used LMAPF models in the lit-
erature and real-world LMAPF applications. We conjecture
that this challenge can also deteriorate the former two chal-
lenges. Therefore, we should be aware of the existence and
influence of these gaps and study more realistic LMAPF
models in future research.

5.1 Dealing with the LMAPF-R Model
Rather than using a four-way movement action model,
which allows an agent to move to one of its neighboring ver-
tices on a four-neighbor grid map, the competition adopts
the more realistic LMAPF-R model, where the motion of
agents is based on moving forward, rotating, and waiting, to
close the gap between our study and the real world. There
are two possible ways to approach rotations in LMAPF-R.
One is to plan with the original action model without ro-
tations and then map the solution to the new one with rota-
tions, for example, using global synchronization or temporal
plan graphs (Hönig et al. 2016). Another way is to directly
include rotations in the planning algorithms.

We adopt the second solution because direct considera-
tion of rotation in the planning algorithms could lead to bet-



ter throughput (Varambally, Li, and Koenig 2022). Adapting
LNS for rotations is simple because we only need to modify
the single-agent planner used in the prioritized replanning.
But it is tricky for PIBT if we want our search to be based
on rotations. Because PIBT needs to reason collisions based
on the next locations of agents, while rotations do not di-
rectly imply the next locations. For example, if an agent ro-
tates 90 degrees clockwise, it is not immediately clear if the
agent wants to move right or backward. Without clear infor-
mation about the next locations, PIBT cannot determine if
a collision will happen in the next step. So, in our solution,
we still resolve collisions at each step of the search, by plan-
ning the next location first with the original PIBT. Since we
have rotations, moving to the next location may correspond
to multiple actions and different agents may need different
steps to their next location. We ask an agent to take only the
first action that leads to its next location and discard the re-
maining ones. In this way, our search incorporates rotations
directly in the current step (as the first actions to the next lo-
cations). A recent paper (Zhang et al. 2023c) also studies the
difference between the two action models and shows how to
adapt CBS to the rotation action model.

The rotation action model could more easily lead to con-
gestion because, intuitively, it takes more steps for agents to
avoid collisions when agents need to change moving direc-
tions. To verify this, we test the four-way movement action
model on Random 800, Game 4000, Warehouse 8000, and
Sortation 10000, namely the 4 instances on which WPPL
underperforms PIBT without guidance graphs in Table 3.
We observe that WPPL performs much better than PIBT
in Game 4000, Warehouse 8000, and Sortation 10000 with
relative throughput improvements of 185.0%, 192.5%, and
189.0%, respectively. For Random 800 with an extreme
agent density, WPPL still performs worse, but only with a
gap of 11. 0%, compared to the original 22.5%. Such results
demonstrate that the rotation action model is more prone to
congestion than the four-way movement action model.

Thus, we argue that even trying to close a small gap, such
as adding rotation actions, still requires a certain amount of
reasoning and engineering. It may also lead to different re-
sults in the experiment and requires careful investigation.

5.2 Unrealistic Modeling
There are several other gaps beyond the competition, which
we believe are worth further studying. These gaps may be
studied for MAPF, but are less explored in LMAPF.
Planning with Kinematics and Dynamics. Even though
this competition adopts a more realistic kinematic model
with rotations as separate actions, it is still far simpler than
many real-world scenarios. Complex kinematics and dy-
namics inevitably require more computational time, even for
the motion planning of a single agent. In addition, complex
kinematics and dynamics could also lead to more severe traf-
fic congestion or deadlocks, since avoiding a collision in-
volves more complex movement.
Uncertainty during Execution. We also need to be aware
of the uncertainty during execution. Both planning with
uncertainty and replanning frequently would require large
computations. Adopting an execution framework like Tem-

poral Planning Graph (TPG) (Hönig et al. 2016) might be a
favorable solution when facing limited planning time, but at
the potential cost of less efficient execution due to the overly
constrained coordination.
Non-Uniform Task Distribution. We usually assume tasks
are uniformly sampled from certain locations or even all
traversable locations on maps in the literature. However, in
LMAPF, imbalanced task distribution could lead to very dif-
ferent local agent densities in different regions, which may
need to be addressed by different algorithms or allocated dif-
ferent amounts of computational resources.
Evolving Systems. We often overlook the system evolution
in some applications, for example, the dynamic changing of
map layouts or agent numbers (Morag et al. 2022). For ex-
ample, roads might be shut down due to accidents or main-
tenance in a traffic system; vehicles move in and out of a
road intersection. These dynamic changes also require us to
design more adaptive algorithms for different situations.

6 Conclusion
With the growing number of real-world LMAPF applica-
tions, it is natural to consider scaling LMAPF algorithms to
more challenging problem instances. We outline in this pa-
per three challenges identified during our participation in the
2023 League of Robot Runners competition. Firstly, we ad-
dress the limited planning time constraint, proposing WPPL
as a solution and suggesting future directions in rule-based,
anytime, and parallel algorithms. Secondly, we alleviate the
congestion issue by applying guidance graphs and disabling
agents. We propose future directions, such as designing bet-
ter guidance and traffic rules, incorporating future traffic pre-
diction and real-time search, and determining the optimal
agent quantity. Last, we discuss the need to reconcile the gap
between simplified LMAPF models in the literature and the
more complex real-world applications, considering kinody-
namic models, execution uncertainty, and evolving systems.

Acknowledgements
The work was supported by NSF Grant 2328671.

References
Barer, M.; Sharon, G.; Stern, R.; and Felner, A. 2014. Sub-
optimal Variants of the Conflict-Based Search Algorithm for
the Multi-Agent Pathfinding Problem. In SoCS, 19–27.
Brown, A. S. 2022. How Amazon Robots Navigate
Congestion. https://www.amazon.science/latest-news/how-
amazon-robots-navigate-congestion.
Chan, S.-H.; Chen, Z.; Lin, D.-L.; Zhang, Y.; Harabor,
D.; Huang, T.-W.; Koenig, S.; and Phan, T. 2024. Any-
time Multi-Agent Path Finding using Operation Paral-
lelism in Large Neighborhood Search. arXiv preprint
arXiv:2402.01961.
Chen, Z.; Harabor, D.; Li, J.; and Stuckey, P. 2024. Traffic
Flow Optimisation for Lifelong Multi-Agent Path Finding.
In AAAI.
Cohen, L. 2020. Efficient Bounded-Suboptimal Multi-Agent
Path Finding and Motion Planning via Improvements to Fo-
cal Search. Ph.D. thesis, University of Southern California.



Damani, M.; Luo, Z.; Wenzel, E.; and Sartoretti, G. 2021.
PRIMAL2: Pathfinding Via Reinforcement and Imitation
Multi-Agent Learning - Lifelong. IEEE RA-L, 2666–2673.
Erdmann, M. A.; and Lozano-Pérez, T. 1987. On Multiple
Moving Objects. Algorithmica, 2: 477–521.
Guo, T.; and Yu, J. 2023. Toward Efficient Physical and
Algorithmic Design of Automated Garages. In ICRA, 1364–
1370.
Hönig, W.; Kumar, T. K. S.; Cohen, L.; Ma, H.; Xu, H.; Aya-
nian, N.; and Koenig, S. 2016. Multi-Agent Path Finding
with Kinematic Constraints. In ICAPS, 477–485.
Huang, T.; Li, J.; Koenig, S.; and Dilkina, B. 2022. Anytime
multi-agent path finding via machine learning-guided large
neighborhood search. In AAAI, 9368–9376.
Ivanashev, I.; Andreychuk, A.; and Yakovlev, K. 2022. Anal-
ysis of the Anytime MAPF Solvers Based on the Combina-
tion of Conflict-Based Search (CBS) and Focal Search (FS).
In MICAI, 368–382.
Jansen, M. R.; and Sturtevant, N. R. 2008. Direction Maps
for Cooperative Pathfinding. In AIIDE, 185–190.
Korf, R. E. 1990. Real-time heuristic search. Artificial In-
telligence, 42(2): 189–211.
Lam, E.; and Le Bodic, P. 2020. New valid inequalities in
branch-and-cut-and-price for multi-agent path finding. In
ICAPS, 184–192.
Lee, H.; Motes, J.; Morales, M.; and Amato, N. M. 2021.
Parallel hierarchical composition conflict-based search for
optimal multi-agent pathfinding. IEEE RA-L, 7001–7008.
Leet, C.; Li, J.; and Koenig, S. 2022. Shard systems: Scal-
able, robust and persistent multi-agent path finding with per-
formance guarantees. In AAAI, 9386–9395.
Li, J.; Chen, Z.; Harabor, D.; Stuckey, P. J.; and Koenig, S.
2021a. Anytime multi-agent path finding via large neighbor-
hood search. In IJCAI, 4127–4135.
Li, J.; Chen, Z.; Harabor, D.; Stuckey, P. J.; and Koenig, S.
2022. MAPF-LNS2: fast repairing for multi-agent path find-
ing via large neighborhood search. In AAAI, 10256–10265.
Li, J.; Chen, Z.; Zheng, Y.; Chan, S.-H.; Harabor, D.;
Stuckey, P. J.; Ma, H.; and Koenig, S. 2021b. Scalable rail
planning and replanning: Winning the 2020 flatland chal-
lenge. In ICAPS, 477–485.
Li, J.; Ruml, W.; and Koenig, S. 2021. EECBS: A bounded-
suboptimal search for multi-agent path finding. In AAAI,
12353–12362.
Li, J.; Tinka, A.; Kiesel, S.; Durham, J. W.; Kumar, T. K. S.;
and Koenig, S. 2021c. Lifelong Multi-Agent Path Finding
in Large-Scale Warehouses. In AAAI, 11272–11281.
Likhachev, M.; Gordon, G. J.; and Thrun, S. 2003. ARA*:
Anytime A* with Provable Bounds on Sub-Optimality. In
NeurIPS.
Liu, M.; Ma, H.; Li, J.; and Koenig, S. 2019. Task and Path
Planning for Multi-Agent Pickup and Delivery. In AAMAS,
1152–1160.
Ma, H.; Harabor, D.; Stuckey, P. J.; Li, J.; and Koenig, S.
2019. Searching with Consistent Prioritization for Multi-
Agent Path Finding. In AAAI, 7643–7650.

Ma, H.; Kumar, T. K. S.; and Koenig, S. 2017. Multi-Agent
Path Finding with Delay Probabilities. In AAAI, 3605–3612.
Madar, N.; Solovey, K.; and Salzman, O. 2022. Leverag-
ing experience in lifelong multi-agent pathfinding. In SoCS,
118–126.
Morag, J.; Felner, A.; Stern, R.; Atzmon, D.; and Boyarski,
E. 2022. Online Multi-Agent Path Finding: New Results. In
SoCS, 229–233.
Okumura, K. 2023. LaCAM: Search-Based Algorithm for
Quick Multi-Agent Pathfinding. In AAAI, 11655–11662.
Okumura, K.; Machida, M.; Défago, X.; and Tamura, Y.
2019. Priority Inheritance with Backtracking for Iterative
Multi-agent Path Finding. In IJCAI, 535–542.
Salzman, O.; and Stern, R. 2020. Research challenges and
opportunities in multi-agent path finding and multi-agent
pickup and delivery problems. In AAMAS, 1711–1715.
Sharon, G.; Stern, R.; Felner, A.; and Sturtevant, N. R. 2015.
Conflict-Based Search for Optimal Multi-Agent Pathfind-
ing. Artificial Intelligence, 219: 40–66.
Sigurdson, D.; Bulitko, V.; Yeoh, W. G. S.; Hernández, C.;
and Koenig, S. 2018. Multi-Agent Pathfinding with Real-
Time Heuristic Search. CIG, 1–8.
Stern, R.; Sturtevant, N. R.; Felner, A.; Koenig, S.; Ma, H.;
Walker, T. T.; Li, J.; Atzmon, D.; Cohen, L.; Kumar, T. K. S.;
Barták, R.; and Boyarski, E. 2019. Multi-Agent Pathfinding:
Definitions, Variants, and Benchmarks. In SoCS, 151–159.
Svancara, J.; Vlk, M.; Stern, R.; Atzmon, D.; and Barták,
R. 2019. Online Multi-Agent Pathfinding. In AAAI, 7732–
7739.
Varambally, S.; Li, J.; and Koenig, S. 2022. Which MAPF
Model Works Best for Automated Warehousing? In SoCS,
190–198.
Vedder, K.; and Biswas, J. 2021. X*: Anytime multi-agent
path finding for sparse domains using window-based itera-
tive repairs. Artificial Intelligence, 291: 103417.
Wan, Q.; Gu, C.; Sun, S.; Chen, M.; Huang, H.; and Jia,
X. 2018. Lifelong Multi-Agent Path Finding in a Dynamic
Environment. In ICARCV, 875–882.
Wang, H.; and Rubenstein, M. 2020. Walk, stop, count, and
swap: decentralized multi-agent path finding with theoreti-
cal guarantees. IEEE RA-L, 5(2): 1119–1126.
Yu, G.; and Wolf, M. 2023. Congestion prediction for large
fleets of mobile robots. In ICRA, 7642–7649.
Zhang, Y.; Fontaine, M. C.; Bhatt, V.; Nikolaidis, S.; and Li,
J. 2023a. Arbitrarily Scalable Environment Generators via
Neural Cellular Automata. In NeurIPS, 57212–57225.
Zhang, Y.; Fontaine, M. C.; Bhatt, V.; Nikolaidis, S.; and Li,
J. 2023b. Multi-Robot Coordination and Layout Design for
Automated Warehousing. In IJCAI, 5503–5511.
Zhang, Y.; Harabor, D.; Le Bodic, P.; and Stuckey, P. J.
2023c. Efficient Multi Agent Path Finding with Turn Ac-
tions. In SoCS, 119–127.
Zhang, Y.; Jiang, H.; Bhatt, V.; Nikolaidis, S.; and Li, J.
2024. Guidance Graph Optimization for Lifelong Multi-
Agent Path Finding. ArXiv, abs/2402.01446.


